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Abstract

Conserving plant diversity is integral to sustainable forest management. This study aims at diversifying tools to map spatial distribution
of species richness. We develop a sampling strategy of using rapid assessments by local communities to gather prior information on
species richness distribution to drive census cell selection by sampling with covariate designs. An artificial neural network model is
built to predict the spatial patterns. Accuracy and consistency of rapid assessment factors, sample selection methods, and sampling
intensity of census cells were tested in a simulation study with seven 25–50-ha census plots in the tropics and subtropics. Results showed
that identifying more plant individuals in a rapid assessment improved accuracy and consistency, while transect was comparable to
or slightly better than nearest-neighbor assessment, but knowing more species had little effects. Results of sampling with covariate
designs depended on covariates. The covariate Ifreq, inverse of the frequency of the rapidly assessed species richness strata, was the
best choice. List sampling and local pivotal method with Ifreq increased accuracy by 0.7%–1.6% and consistency by 7.6%–12.0% for 5%
to 20% sampling intensity. This study recommends a rapid assessment method of selecting 20 individuals at every 20-m interval along
a transect. Knowing at least half of the species in a forest that are abundant is sufficient. Local pivotal method is recommended at 5%
sampling intensity or less. This study presents a methodology to directly involve local communities in probability-based forest resource
assessment to support decision-making in forest management.

Keywords: biodiversity conservation; design-based sampling; forest inventory; rapid biodiversity assessment; species diversity; variable
probability sampling

Introduction
Plant diversity is an important forest ecosystem service that
benefits human society (Gascon et al. 2015). A common indicator
of plant diversity is species richness, which is defined as the total
number of plant species in a forest. Species richness is formally
adopted by the Montréal Process and the Helsinki Process as an
indicator for sustainable forestry (Hall 2001). Mapping the spatial
distribution of plant species richness improves understanding
of plant community spatial and temporal changes, helps desig-
nate nature reserves, and supports forest landscape management
decisions (Pearson and Carroll 1998, Devictor et al. 2010, Villero
et al. 2017). Producing such a map is challenging because it is
impossible to enumerate all plant individuals in a forest. Thus,

species richness assessments often rely on sampling to survey
plant species richness in some parts of a forest and on statistical
models to predict richness on unsampled areas. Thus, building
a cost-effective, precise, and probability-based plant diversity
inventory system is essential for multipurpose management of
forest resources.

Ground plots for a plant diversity survey are usually low in
numbers and sparsely distributed (Chong et al. 2001, Haas et al.
2006). Thoughtful placement of ground plots could yield neces-
sary information for management decisions while keeping cost
manageable. Basu (1969) stated that a sampling design would be
efficient if selection probabilities were conditional on the param-
eters of interest. In case of surveying species diversity, selection
probability of a sampling design would ideally be conditional on
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true species richness so that an area with high species richness
would be more likely sampled, and vice versa. The dilemma is
that prior knowledge of true species richness necessary to drive
sample selection is usually unavailable. Proxies derived from
remote sensing are often used (Pau et al. 2012, Coops et al. 2019).
However, there is evidence suggesting that correlation between
spectral variability in remotely sensed images and species rich-
ness is only subtle (Fassnacht et al. 2022). Alternatively, we pro-
pose a rapid assessment strategy that engages local communities
familiar with their forests to gather prior information on the
spatial distribution of species richness using their knowledge. This
prior information is then used to drive sample selection by a
probability-based sampling design.

There were very few studies on using knowledge to guide
sampling of plant diversity. Goff et al. (1982) introduced the Timed
Meandered Search (TMS) method to locate sample points based
on field judgment. However, it was not a probability-based design.
Lam et al. (2018) developed a procedure for assessing plant diver-
sity by applying Probability Proportional to Prediction (3P) sam-
pling (Grosenbaugh 1964, 1965) to knowledge used in a rapid
assessment. According to their procedures, a forest is first tessel-
lated into non-overlapping cells of equal size. Local communities
visit a cell and rapidly select and identify a few plant individuals
based on their knowledge. Once all cells are rapidly assessed,
the number of species in each cell is tallied. The 3P sampling
is used to select a subsample of cells for species census with
selection probability proportional to the species tally from the
rapid assessment. The species census could be carried out by
professionals such as a botanist. With both rapid assessment
and census information, Lam et al. (2018) assessed accuracy and
efficiency in predicting average cell-level species richness. This
study applies their sampling methods but expands their work to
map spatial distribution of species richness across a forest with
additional datasets from the tropical regions and other sampling
with covariate designs.

Sampling with covariate designs are a general class of sampling
designs that use auxiliary information (covariate) to increase
efficiency in forest inventory (Kershaw Jr. et al. 2016). They are
also known as sampling design based on auxiliary information in
Särndal et al. (1992). The 3P sampling is one of them. Many studies
on using sampling with covariate designs focus on estimating
primary forest products. For example, Yang et al. (2019) found
that sampling with covariate designs with covariates extracted
from an airborne Light Detection and Ranging (LiDAR) system
combined with estimation models improved estimation of for-
est volume. Hsu et al. (2020) applied sampling with covariate
designs to correct for local bias in LiDAR-assisted estimates of
forest volume in small woodlots. However, Iles (2003) noted that a
covariate could be any as long as it was highly correlated with the
variable of interest. Thus, this supports the use of sampling with
covariate designs in any context, especially in our case of mapping
distribution of species richness.

Spatial modeling requires modeling trends in observed data,
estimating underlying model parameters, and predicting at unob-
served locations (Banerjee et al. 2015). Artificial neural network
(ANN) is a machine learning framework that adapts its internal
structures to external information and is capable of solving a
complex nonlinear problem (McRoberts et al. 1991). In the past
decades, ANN has been applied in forestry such as predicting
occurrence of rare plant species (Williams et al. 2009), model-
ing volume increment (Bayat et al. 2021), and mapping stand
structures (Ingram et al. 2005). In particular, Foody and Cutler
(2006) applied ANN to map species richness and composition of a

tropical forest in Malaysia with remote sensing. They found that
ANN produced strong correlation between predicted and observed
values. Furthermore, ANN has been found to outperform other
machine learning approaches such as support vector machine
and random forest in predicting occurrence of disease (Hung et al.
2017), mapping species richness (Choe et al. 2021), and monitoring
of water quality (Hafeez et al. 2019). Taking advantage of its
flexibility, this study integrates ANN with the above sampling pro-
cedures to predict spatial distribution of species richness across a
forest.

With the anthropogenic influence on the world forests, Pimm
and Raven (2000) warned that many plant species could disappear
before they were known. Hence, there is an urgent need to inno-
vate tools for conserving biodiversity and improving forest plan-
ning to meet complex management objectives. Local knowledge
is increasingly recognized to benefit biodiversity survey (Walker
et al. 1995). Applying local knowledge with sampling with covari-
ate designs could be cost-effective by potentially reducing the
cost of biodiversity census. Actively engaging local communities
in forest planning could also lead to their social and economic
well-being (FSC 2012). The overall goal of this simulation study
was to assess a probability-based plant diversity inventory sys-
tem integrating rapid assessment with local knowledge, sampling
with covariate designs, and a machine learning technique for
mapping distribution of species richness across a forest. The
three specific objectives were (i) to understand how amount of
knowledge and rapid assessment methods affect accuracy and
consistency in mapping species richness, (ii) to compare accuracy
and consistency between sampling with covariate designs and
between covariates, and (iii) to evaluate trade-off between number
of census cells and accuracy and consistency.

Methods
Data
Seven long-term Forest Dynamics Census Plots from the Forest
Global Earth Observatory Network (ForestGEO; forestgeo.si.edu)
were used in this study (hereafter as sites; Table 1). Six of the
sites were in the tropics with one in the subtropics. All sites were
either 25 or 50 ha in area with identical plant census protocols. All
woody plants with diameter at breast height ≥1 cm were mapped,
measured, and identified to species level. In this study, only the
main stem of an individual was retained. Species richness of the
seven sites ranged from 110 to 1233.

Rapid assessment method
Following Lam et al. (2018), each site was first tessellated into
non-overlapping equally sized 20 × 20 m (0.04 ha) cells (Fig. S1a;
Supplementary Materials). The total number of cells (N) of the
seven sites was either 625 or 1250 with cell average species rich-
ness from 31 to 127 (Table 1). Rapid assessment of plant diversity
was carried out in all N cells of a site (hereafter as rapid cells).
Three factors were considered when simulating rapid assessment:
(i) amount of knowledge (KN), (ii) rapid assessment effort (RE), and
(iii) rapid assessment type (RT). KN simulated how much a local
community know about the species in a forest, and indirectly,
their ability to identify a species. KN had three levels: (i) 50%
(KN50), (ii) 75% (KN75), and (iii) 100% (KN100) of the total number
of species in a site, i.e. knowing 50%, 75%, or all the species in a
site. To simulate KN50 and KN75, species were randomly selected
without replacement and with probability proportional to their
total abundance in a site. This assumed that a local community
was more familiar with a locally abundant species than a rare one.
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Table 1. Characteristics of the seven long-term forest dynamics census plots.

Plot Country Ecological
zone

Plot
area
(ha)

Plot plant
count

Plot
species
richness

Cell count
(N)

Cell
species
richness

Cell plant
count

Year Reference

Amacay-
acu

Colombia Tropical 25 116 570 1233 625 102
(23.4%)

187
(23.9%)

2007 Duque et al.
(2017), Zuleta
et al. (2020)

Pasoh Malaysia Tropical 50 335 343 820 1250 127
(11.9%)

268
(19.3%)

1985 Manokaran
and LaFrankie
(1990)

Danum Malaysia Tropical 50 233 408 693 1250 71
(19.6%)

187
(21.9%)

2011 O’Brien et al.
(2022)

Wanang Papua New
Guinea

Tropical 50 253 653 581 1250 84
(18.8%)

192
(28.1%)

2009 Vincent et al.
(2015)

BCI Panama Tropical 50 221 758 302 1250 52
(17.2%)

177
(19.9%)

2010 (Hubbell et al.
1999; Condit
et al. 2019a,
2019b, 2019c)

Sinharaja Sri Lanka Tropical 25 207 469 238 625 52
(19.8%)

332
(37.5%)

1996 Anderson-
-Teixeira et al.
(2015)

Fushan Taiwan Subtropical 25 114 354 110 625 31
(26.0%)

183
(44.3%)

2004 Su et al. (2007)

Ecological zone is defined by the ForestGEO classification (forestgeo.si.edu). Plot plant count = total number of plant individuals in a plot. Plot species
richness = total number of species in a plot. Cell count = total number of non-overlapping 20 × 20 m cells in a plot. Cell species richness = average number of
species in a cell with its coefficient of variation in parentheses. Cell plant count = average number of plant individuals in a cell with its coefficient of variation
in parentheses. Year = year of data collection.

RE implied the amount of resources invested in a rapid assess-
ment. It was represented by the number of individuals selected
for rapid assessment in a cell: (i) 10 (RE10), (ii) 20 (RE20), and (iii)
40 (RE40) plant individuals. RT mimicked the ways of selecting
individuals for rapid assessment in a cell. Three types of RT were
simulated: (i) random walk (RTrw), (ii) nearest-neighbor (RTnn),
and (iii) transect (RTtr). RTrw mimicked selecting individuals by
randomly walking about in a cell. It was simulated by randomly
selecting individuals in a cell with equal probability (Fig. S1b).
RTnn was analogous to the nearest-neighbor sampling (Kershaw
Jr. et al. 2016). First, a location in a cell was randomly selected, and
then, a number of individuals closest to the location were selected
(Fig. S1c). RTtr mimicked selecting individuals when traversing a
transect. To simulate RTtr, transects were first randomly placed
across rows of cells in a site, i.e. placement of transects was
independent between rows (Fig. S1d). The transect in each cell
was then subdivided into five equal intervals (Fig. S1d). In each
interval, one-fifth of RE (RE/5) individuals closest to the transect
in perpendicular distance on either side were selected (Fig. S1d).
In summary, there were a total of 27 combinations of rapid
assessment methods (3 KN × 3 RE × 3 RT).

Sampling with covariate design
Five sampling designs were used to subsample rapid cells for cen-
sus of plant species (hereafter as census cells): (i) simple random
sampling (SRS), (ii) spatial systematic sampling (SYS), (iii) system-
atic sampling from an ordered list (SOL), (iv) list sampling (LIST),
and (v) local pivotal method (LPM). Subsampling was without
replacement at eight sampling intensities: 1%, 5%, 10%, 15%, 20%,
25%, 30%, and 40% of N rapid cells in a site. Let n be the number of
census cells. SRS and SYS were sample selection methods without
covariate. For SRS, n census cells were randomly selected with
equal probability. For SYS, a two-dimensional systematic grid of
n census cells was established with grid size determined by n and

the dimensions of a site. A rapid cell was first randomly selected
as the starting census cell (Iles 2003), and the remaining n − 1
census cells were spread out according to the grid size.

SOL, LIST, and LPM are sampling with covariate designs. SOL
was equal probability design, but LIST and LPM were variable
probability designs (Yang et al. 2019). For SOL, rapid cells were
first ordered by the increasing values of a covariate. If two or more
rapid cells shared the same values, they were randomly ordered.
A rapid cell was randomly selected as the starting census cell (Iles
2003), and the remaining n − 1 census cells were systematically
selected at an interval of N/n (Kershaw Jr. et al. 2016). For LIST,
rapid cells were first arranged into a list in any order. Cumulative
sum of a covariate was sequentially calculated for each rapid cell
down the list. Each rapid cell was then assigned two numbers:
the cumulative sum of the rapid cell before it in the list and its
cumulative sum. A random number was drawn between 0 and the
maximum cumulative sum. A rapid cell with the random number
falling between its two numbers was selected as the census cell
(Yang et al. 2019). This process was repeated n times. Grafström
et al. (2012) developed the local pivotal method (LPM) so that
several covariates could be used to assign selection probability
to a sample unit. LPM spread census cells evenly across a mul-
tidimensional space formed by multiple covariates, which might
include spatial coordinates. LPM assigned either equal or unequal
inclusion probabilities to the rapid cells. A measure of distance
was calculated between two rapid cells in the multidimensional
space. A set of updating rules on inclusion probability was used to
select rapid cells as the final set of census cells. A rapid cell was
first randomly selected, and its nearest rapid cell was identified.
Inclusion probabilities of the two rapid cells were updated accord-
ing to the rules. This process was repeated until the sampling
outcome was decided for one of them (Grafström et al. 2012). In
general, two rapid cells that were closed to each other had small
joint inclusion probability (Grafström and Ringvall 2013), which
lowered the probability of selecting both as census cells. Hence,
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this negative correlation created a well-spread sample (Grafström
et al. 2012).

Two covariates were extracted from each rapid cell: (i) rapid
richness (Srapid) and (ii) inverse of the frequency of the rapid
richness stratum that it belonged to (Ifreq). Srapid was defined as the
number of species identified from rapid assessment. We assumed
that Srapid reflected true richness in a rapid cell. A rapid cell with
higher Srapid was more likely to be species rich, and these cells
should be chosen for census with a greater probability. Ifreq was
derived from post-stratifying rapid cells by their Srapid. In post-
stratification, rapid cells with the same Srapid were grouped into a
stratum. The frequency (count) of rapid cells in each stratum was
calculated. Ifreq for a rapid cell was the inverse of the frequency
of the stratum that it belonged to. For example, a stratum with
Srapid of 2 species had 50 rapid cells in it. Then, Ifreq for every rapid
cell in that stratum was 1/50. The maximum number of strata
would be RE. Basically, Ifreq assigned higher selection probability
to rapid cells in a stratum with lower frequency. Srapid was used as
a covariate in SOL, LIST, and LPM, while Ifreq was used in LIST and
LPM. Regardless of the covariate, LPM included cell coordinates
defined as the row and column indices of rapid cells as an addi-
tional set of covariates to achieve spatial balance. For LPM(Srapid),
equal inclusion probability was assigned to the rapid cells in
the space of Srapid. For LPM(Ifreq), unequal inclusion probability
proportional to Ifreq was assigned to the rapid cells. In summary,
seven sampling designs were simulated: SRS, SYS, SOL, LIST(Srapid),
LIST(Ifreq), LPM(Srapid), and LPM(Ifreq).

Artificial neural network
A dataset compiled from both rapid assessment and census infor-
mation was separated into two sets of data: a modeling dataset
and a prediction dataset. The modeling dataset consisted of n cen-
sus cells with both the rapid assessment and census information.
The modeling dataset was used to train an ANN model. Informa-
tion extracted from each census cell in the modeling dataset were
Srapid, rapid Shannon index, rapid species list, cell coordinates, and
Scensus. Rapid Shannon index was the Shannon diversity index
(Magurran 2004) calculated with species information from the
rapid assessment. Rapid species list was a list of species name
from the rapid assessment. Scensus was the total number of species
found in a cell from the census. The prediction dataset consisted
of N − n = m rapid cells that were not censused, i.e. having only
information from the rapid assessment. The prediction dataset
was used to assess the performance of the final ANN model.

An ANN model consisted of three main layers arranged in
a sequence: an input layer, a network of hidden layers, and an
output layer. The input layer organized input data and fed them to
the network of hidden layers for model construction. In this study,
the input data consisted of Srapid, rapid Shannon index, rapid
species list, and cell coordinates from the modeling dataset. The
network of hidden layers consisted of five hidden layers with 64
artificial neurons per layer. An artificial neuron was governed by
an activation function. An activation function performed point-
wise nonlinear transformation of input data into a ‘signal’. If the
‘signal’ was strong enough, the neuron fired its outputs to the
neurons in the next hidden layer. This study applied the Mish
activation function (Misra 2020). When everything passed through
the five hidden layers and an initial ANN model was built, the
output layer predicted species richness (Spred) of each n census
cells.

At the next step, Spred was compared to Scensus for the n census
cells. The differences were used to compute loss by the Huber
loss function (Huber 1964). Gradient of the computed loss was

calculated by taking partial derivatives. It was then propagated
through the network of hidden layers of the initial ANN model
using the backward propagation algorithm from Rumelhart et al.
(1986). The Adam gradient descent algorithm from Kingma and
Ba (2015) was used to update the parameters in the hidden layers
with the backward propagated gradient. The newly updated ANN
model was trained again with the same input data. The training-
updating process was repeated 50 times to produce the final
ANN model. During the training-updating process, two regularizer
algorithms (Pereyra et al. 2017) and a dropout algorithm from
Srivastava et al. (2014) were applied to avoid model overfitting.
Pasupa and Sunhem (2016) and Olson et al. (2018) found that
regularization techniques and dropout algorithms were effective
in handling model overfitting from small datasets, which would
be useful in this study due to the low sampling intensity of census
cells. A 4-fold cross-validation was also carried out to assess
model performance and for selecting optimal hyperparameters.
For the cross-validation, the modeling dataset was randomly split
into four groups. Three groups were used for training the model,
and one group was used for validation. The cross-validation pro-
cess was repeated four times.

Lastly, the final ANN model was used to predict species rich-
ness of the m rapid cells in the prediction dataset. Srapid, rapid
Shannon index, rapid species list, and cell coordinates of the m
rapid cells were first extracted from the prediction dataset. These
input data were fed into the final ANN model. It then predicted
Spred for each m rapid cell for further statistical analyses. The
above process of model building and prediction is summarized in
Fig. S2b (Supplementary Materials).

Simulation
A total of 1512 combinations from the 27 rapid assessment meth-
ods, the 7 sampling designs, and the 8 sampling intensities were
simulated. Simulation was independently carried out for each site.
At first, each of the 27 rapid assessment methods was indepen-
dently simulated. For the rapid assessment methods with KN50
and KN75, a list of known species was generated as described
above. When simulating the rapid assessment with KN50 and
KN75, a selected individual whose species did not match those
in the list (i.e. ‘unknown’ species) was dropped. However, the
dropped individual was not replaced by selecting a new individual.
Thus, the actual number of individuals selected in a cell after the
simulation could be lower than the designated RE. We believed
this better reflected field operation and the effects of incom-
plete knowledge. Next, for each of the simulated 27 rapid assess-
ment method, 56 combinations of sampling design and sampling
intensity were simulated. In other words, the 56 combinations
of sampling design and sampling intensity were nested under a
rapid assessment method. This process of first simulating the
rapid assessment methods and then the sampling designs and
intensities was repeated 100 times. With the 100 iterations, the
list of known species was independent between iterations, i.e.
the list could be different between iterations. Additionally, the
56 combinations of sampling design and sampling intensity were
also independent between iterations. The simulation process is
summarized in Fig. S2a. When all simulations were completed,
ANN model building and prediction were carried out for each
iteration of the 1512 combinations. The simulation was carried
out in Python.

Statistical analysis
This study assessed accuracy and consistency of the 1512 com-
binations in predicting spatial distribution of species richness in
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m rapid cells in a prediction dataset. Let k be the k-th rapid cell
in a prediction dataset, k = 1, . . . ,m. Percent absolute bias (PAB) for
the k-th rapid cell was calculated as PABk = ∣∣Spred,k − Strue,k

∣∣ /Strue,k ·
100%, where Strue,k was the true number of species found in the
k-th rapid cell. PAB accounted for both over- and underestimation
of Strue. It also made comparison between sites comparable due
to differences in species richness. Relative accuracy (Q) for the k-
th rapid cell was calculated as the ratio of Spred,k to Strue,k, Qk =
Spred,k/Strue,k. Qk >1 implied overestimation with Qk <1 indicating
underestimation.

Accuracy was represented by the mean percent absolute bias
(MPAB). For the i-th iteration, MPAB was calculated by averag-
ing PAB of all m rapid cells, MPABi = ∑m

k=1PABik/m. A higher
MPAB indicated lower accuracy, and vice versa. Consistency was
represented by the coefficient of variation in relative accuracy
(CVQ). CVQ was the ratio of the standard deviation of relative
accuracy to the mean of relative accuracy expressed in percent-
age, CVQ = SDQ/MQ · 100%. For the i-th iteration, the standard
deviation of relative accuracy (SDQ) was calculated as SDQi =√∑m

k=1 (Qik − MQi)
2
/ (m − 1), and the mean of relative accuracy

(MQ) was calculated as MQi = ∑m
k=1Qik/m. A lower CVQ indicated

higher consistency because relative accuracy between m rapid
cells was more similar. In other words, a lower CVQ implied that
rapid cells with high true species richness were predicted so, and
vice versa. CVQ was useful to forest planning if a spatial map of
relative species richness was sufficient for management decision-
making without the need for unbiased prediction of species rich-
ness.

For Objective 1, the effects of the rapid assessment methods
were represented by the means of MPAB and CVQ calculated
across all sites and iterations for each of the 1512 combinations
(27 rapid assessment methods × 7 sampling design × 8 sampling
intensity). To supplement the results of the effect sizes (Sullivan
and Feinn 2012), a three-way analysis of variance (ANOVA) model
was developed. The ANOVA model was fitted with sites treated
as blocks to control for underlying variations between sites and
was fitted separately to each of the 56 combinations of sampling
design and sampling intensity as follows,

Y = μ + site + KN + RE + RT
+ (KN × RE) + (KN × RT) + (RE × RT) + (KN × RE × RT)

(1)

where Y was either MPAB or CVQ.
For Objective 2, SRS was assigned as the baseline. Differences

in MPAB and CVQ between a sampling design and SRS were
calculated as follows: within a site, for the j-th rapid assessment
method at the i-th iteration (Fig. S2a), the difference in MPAB
(dMPAB) and CVQ (dCVQ) was calculated for each of the 56
combinations of sampling design and sampling intensity as

dYij,si,sdesign = Yij,si,sdesign − Yij,si,SRS (2)

where dY was either dMPAB or dCVQ, i = 1, . . . ,100 iterations,
j = 1, . . . ,27 rapid assessment methods, si = sampling intensity (1%,
5%, 10%, 15%, 20%, 25%, 30%, 40%), and sdesign = sampling design
(SYS, SOL, LIST(Srapid), LIST(Ifreq), LPM(Srapid), and LPM(Ifreq)). The dY
was calculated in this manner to control for underlying variations
between sites and the nesting structure of sampling design and
sampling intensity under a rapid assessment method (Fig. S2a).
Lastly, all abbreviations above are provided in the Supplementary
Materials.

Figure 1. MPAB of the 27 combinations of KN, RE, and RT for SRS at (a–c)
5% and (d–f) 20% sampling intensity. The rapid assessment efforts are 10
(RE10), 20 (RE20), and 40 (RE40) individuals. The rapid assessment types
are random walk (RTrw), nearest-neighbor (RTnn), and transect (RTtr).
MPAB is averaged across all sites and iterations.

Results
Rapid assessment method
With SRS as the baseline example, there were distinct effects of
RE and RT but not KN on the accuracy (MPAB) at both 5% and
20% sampling intensity (Fig. 1). Increasing RE decreased MPAB
suggesting an increase in accuracy. At 5% sampling intensity,
reduction in MPAB was about 1.5% when RE increased from 10
to 40 individuals, e.g. MPAB decreased from 16.5% to 14.8% on
average for RTrw (Fig. 1a–c). At 20% sampling intensity, MPAB
was reduced by only about 0.5%, and accuracy of RE40 was
either comparable to or slightly higher than RE20 (Fig. 1d–f). RTrw
was consistently the most accurate with the lowest MPAB. RTrw
reduced MPAB by about 1% and 0.5% on average compared to
RTtr and RTnn at 5% and 20% sampling intensity, respectively
(Fig. 1). In contrast, RTtr was either comparable to or slightly more
accurate than RTnn. KN had no visible effect on accuracy as
MPAB was similar across KN levels. The effects of RE, RT, and KN
were consistently observed across sampling designs and sampling
intensities (Figs. S3–S10; Supplementary Materials). Overall, a
rapid assessment method with any KN × RE40 × RTrw was either
the most accurate or comparably so. Lastly, the ANOVA models
supported the results suggesting significant effects of RE and
RT (P < .001) and generally insignificant effects of KN (P > .05) on
accuracy (Fig. S11; Supplementary Materials).

Under SRS, there were noticeable effects of RT on the con-
sistency (CVQ), but the effects of RE and KN were less straight-
forward (Fig. 2). Increasing RE increased consistency by reducing
CVQ, but it depended on sampling intensity. At 5% sampling
intensity, reduction in CVQ ranged from 1.3% to 2.6% when RE
increased from 10 to 40 individuals, e.g. CVQ decreased from
29.9% to 28.6% on average for RTrw (Fig. 2a–c). On the contrary, at
20% sampling intensity, CVQ was comparable between RE (28.6%–
29.5%; Fig. 2d–f) except for RE40 × RTtr, which was slightly higher
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Figure 2. CVQ of the 27 combinations of KN, RE, and RT for SRS at (a–c)
5% and (d–f) 20% sampling intensity. The rapid assessment efforts are 10
(RE10), 20 (RE20), and 40 (RE40) individuals. The rapid assessment types
are random walk (RTrw), nearest-neighbor (RTnn), and transect (RTtr).
CVQ is averaged across all sites and iterations.

at KN50 and KN75 (Fig. 2f). Similar to MPAB, RTrw was the most
consistent with the lowest CVQ. At 5% sampling intensity, RTrw
reduced CVQ by 0.8% to 2.1% on average compared to RTtr and
RTnn (Fig. 2a–c), but the reduction was less than 1% at 20% sam-
pling intensity (Fig. 2d–f). Also, RTtr was either comparable to or
slightly more consistent than RTnn. KN did not have an apparent
effect on consistency mainly due to large variation in CVQ. For
example, at 5% sampling intensity, the range in CVQ was 28.4%–
32.0%, 28.6%–32.1%, and 28.8%–31.9% for KN50, KN75, and KN100,
respectively (Fig. 2a–c). As a result, averages of CVQ were similar
across KN. In contrast, results of LIST(Ifreq) and LPM(Ifreq) were
different to SRS (Fig. 3), but they resembled the trends in MPAB
(Fig. 1). At 5% and 20% sampling intensity, there were distinct
effects of RE and RT on consistency but not KN (Fig. 3). The
results were consistent across sampling intensities (Figs. S12–S19;
Supplementary Materials). Overall, a rapid assessment method
with any KN × RE40 × RTrw was either the most consistent or
comparably so. Lastly, the ANOVA models supported the results
suggesting significant effects of RE for most sampling designs
and sampling intensities, significant effects of RT (P < .001), and
generally insignificant effects of KN (P > .05) on consistency (Fig.
S20; Supplementary Materials).

In summary, results showed evident effects of RE and RT on the
accuracy and consistency but not KN. This was broadly observed
across different sampling designs and a range of sampling intensi-
ties. In general, increasing RE and/or applying RTrw during rapid
assessment improved the accuracy and consistency in mapping
spatial distribution of species richness.

Sampling design
To explore potential underlying variations between sites, MPAB
and CVQ were averaged across all rapid assessment methods
and iterations by site and sampling intensity for SRS. Under SRS,
both Danum and Amacayacu had the largest MPAB (17.3%–18.6%

Figure 3. CVQ of the 27 combinations of KN, RE, and RT for (a–f)
LIST(Ifreq) and (g–l) LPM(Ifreq) at 5% and 20% sampling intensity. The
rapid assessment efforts are 10 (RE10), 20 (RE20), and 40 (RE40)
individuals. The rapid assessment types are random walk (RTrw),
nearest-neighbor (RTnn), and transect (RTtr). CVQ is averaged across all
sites and iterations.

and 16.0%–19.3%, respectively), while Pasoh had the lowest MPAB
(7.2%–9.3%) at 5% and 20% sampling intensity (Table 2). For CVQ,
Danum consistently had the highest CVQ (74.8%–85.8%), while
Pasoh had the lowest value (9.8%–12.1%) at 5% and 20% sampling
intensity (Table 2). The results also were consistently observed
across sampling intensity (Table S1; Supplementary Materials).
This suggested that sites were inherently variable in achieving a
level of accuracy and consistency.

To examine accuracy and consistency of a sampling design
with respect to SRS, dMPAB and dCVQ were averaged across all
sites, rapid assessment methods, and iterations by sampling
design and sampling intensity. Among the sampling designs,
LIST(Ifreq) and LPM(Ifreq) outperformed SRS, and both achieved the
largest reduction in MPAB and CVQ for all sampling intensities
apart from 1% sampling intensity for MPAB (Tables 3 and S2).
At 5% sampling intensity, LIST(Ifreq) and LPM(Ifreq) reduced MPAB
by 0.78% and 0.70%, respectively, while LIST(Ifreq) and LPM(Ifreq)
reduced CVQ by 7.64% and 8.44%, respectively, compared to SRS
(Table 3). As expected, higher sampling intensity increased the
reduction by both sampling designs. At 20% sampling intensity,
reduction in MPAB was almost double, while it was 1.1 to 1.6 times
for CVQ (Table 3). Across sampling intensity, MPAB and CVQ were
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Table 2. MPAB and CVQ by site at 5% and 20% sampling intensity for SRS

Site MPAB (%) CVQ (%)

5% 20% 5% 20%

Amacayacu 19.33 (2.09) 15.98 (1.83) 35.81 (4.62) 32.45 (4.84)
BCI 12.97 (0.81) 10.30 (0.65) 16.58 (0.98) 13.64 (0.79)
Danum 18.55 (2.21) 17.28 (2.05) 74.79 (24.80) 85.75 (19.41)
Fushan 18.37 (1.94) 15.65 (1.64) 25.09 (2.27) 22.73 (2.27)
Pasoh 9.28 (0.46) 7.23 (0.43) 12.05 (0.51) 9.78 (0.49)
Sinharaja 14.55 (1.04) 11.27 (0.82) 18.68 (1.07) 15.20 (1.01)
Wanang 15.83 (0.96) 12.74 (0.94) 27.10 (2.00) 23.69 (2.59)

MPAB and CVQ are averages across all rapid assessment methods and iterations with standard deviations in parentheses.

Table 3. Difference in mean percent absolute bias (dMPAB) and difference in coefficient of variation in relative accuracy (dCVQ) by
sampling design at 5% and 20% sampling intensity with SRS as the baseline

Sampling design dMPAB (%) dCVQ (%)

5% 20% 5% 20%

SYS −0.07 (1.67) −0.06 (1.59) −0.24 (13.50) −0.27 (9.94)
SOL −0.01 (1.65) 0.02 (1.58) 0.16 (12.46) 0.44 (9.52)
LIST(Srapid) 0.16 (1.86) 0.42 (1.74) −0.62 (14.49) 0.23 (10.72)
LIST(Ifreq) −0.78 (1.87) −1.64 (2.51) −7.64 (19.45) −11.97 (24.74)
LPM(Srapid) 0.01 (1.63) 0.06 (1.55) 0.33 (12.44) 0.52 (9.50)
LPM(Ifreq) −0.70 (1.83) −1.57 (2.31) −8.44 (20.34) −9.65 (20.89)

The dMPAB and dCVQ are averages across all sites, rapid assessment methods, and iterations with standard deviations in parentheses.

reduced up to 1.9% and 13.1%, respectively (Table S2). On the other
hand, SOL was not different from SRS with reduction in MPAB
and CVQ less than 0.1% and 0.8%, respectively, across sampling
intensity (Table S2). In summary, LIST(Ifreq) performed slightly
better than LPM(Ifreq) in accuracy, but it slightly underperformed
in consistency when sampling intensity was less than 10% (Table
S2).

The standard deviations in dMPAB and dCVQ indicated that
variations in dMPAB and dCVQ for LIST(Ifreq) and LPM(Ifreq) were
higher than the other sampling designs across sampling inten-
sity (Tables 3 and S2). For dMPAB at 5% sampling intensity, the
standard deviation in LIST(Ifreq) and LPM(Ifreq) were 1.9% and
1.8%, respectively (Table 3). For dCVQ, they were 19.5% and 20.3%,
respectively (Table 3). At 20% sampling intensity, standard devi-
ations of LIST(Ifreq) and LPM(Ifreq) were up to 1.6 and 2.6 times
higher than those of the other sampling designs (Table 3). For
comparison, SYS, SOL, and LPM(Srapid) had the lowest standard
deviation in dMPAB and dCVQ across sampling intensity (Table
S2). In summary, this suggested that although LIST(Ifreq) and
LPM(Ifreq) increased accuracy and consistency compared to SRS,
the effect was more variable between sites and rapid assessment
methods.

Looking more closely, the variations in dMPAB and dCVQ
of LIST(Ifreq) and LPM(Ifreq) between the 27 rapid assessment
methods at 5% sampling intensity was largely due to RE with
smaller influence from RT and KN (Fig. 4). In general, larger RE
led to greater reduction in dMPAB and dCVQ for a combination
of KN × RT. For example, dMPAB of the combination KN50 × RTrw
× RE10 for LPM(Ifreq) was −0.48% but increased to −0.89% at
RE40 (Fig. 4a). For a combination of KN × RE, RTtr had larger
dMPAB and dCVQ than RTnn under LIST(Ifreq), but RTtr was either
comparable to or had smaller dMPAB and dCVQ than RTnn under
LPM(Ifreq) (Fig. 4b, c, e, f). In summary, even though LIST(Ifreq) and
LPM(Ifreq) achieved overall greater accuracy and consistency, their
performances depended on the choice of a rapid assessment
method with larger RE offering better results in general.

Figure 4. Difference in mean percent absolute bias (dMPAB; a–c) and
difference in coefficient of variation in relative accuracy (dCVQ; d–f) by
the 27 combinations of KN, RE, and RT for LIST(Ifreq) and LPM(Ifreq) at 5%
sampling intensity. The rapid assessment efforts are 10 (RE10), 20 (RE20),
and 40 (RE40) individuals. The rapid assessment types are random walk
(RTrw), nearest-neighbor (RTnn), and transect (RTtr). The dMPAB and
dCVQ are averages across all sites and iterations.

Sampling intensity
Increasing sampling intensity of census cells reduced MPAB and
CVQ nonlinearly with the largest rate of reduction between 1%
and 5% sampling intensity, and the decrease gradually leveled
off at higher sampling intensity (Figs. 5, S21, and S22; Supple-
mentary Materials). LIST(Ifreq) and LPM(Ifreq) generally outper-
formed the other sampling designs, but the trends were differ-
ent between MPAB and CVQ. For MPAB, LIST(Ifreq) and LPM(Ifreq)
performed equally well, but both only outperformed the other
sampling designs when sampling intensity was greater than 5%
(Figs. 5a, b and S21). For example, there was about 1.7% difference
in MPAB between LIST(Ifreq) and the other sampling designs at
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Figure 5. MPAB and CVQ by sampling intensity for the seven sampling
designs. The relationship is depicted for the combination of knowledge
level of 50% (KN50), random walk rapid assessment type (RTrw), and
rapid assessment effort of (a, c) 10 (RE10) and (b, d) 40 (RE40) individuals.
MPAB and CVQ are averaged across all sites.

10% sampling intensity for the KN50 × RTrw × RE40 combination
(Fig. 5b).

On the other hand, LIST(Ifreq) and LPM(Ifreq) consistently
produced lower CVQ across all sampling intensities (Figs. 5c, d
and S22). For example, there was about 6.5% difference in CVQ
between LIST(Ifreq) and the other sampling designs at 1% sampling
intensity for the KN50 × RTrw × RE40 combination (Fig. 5d).
When sampling intensity was below 5%, LPM(Ifreq) performed
comparable to or slightly better than LIST(Ifreq), but LIST(Ifreq)
was distinctly better than LPM(Ifreq) when sampling intensity
was at and above 10% sampling intensity (Figs. 5c, d and S22).
Interestingly, increasing sampling intensity under the rest of
the sampling designs had no effect on reducing CVQ. Lastly,
LIST(Srapid) performed the poorest overall. In short, LIST(Ifreq) and
LPM(Ifreq) were preferred given that they performed well in terms
of both accuracy and consistency when sampling intensity was
lower than 5%.

Discussion
Our study proposes an alternative approach to mapping dis-
tribution of woody plant species richness across a local forest
by integrating rapid assessment by local communities, variable
probability sampling theory, and machine learning techniques.
Because assessing species diversity is resource intensive, Oliver
and Beattie (1996) proposed a ‘restricted sampling’ strategy by
reducing sampling units, time, or methods while trying to capture
relative differences in diversity between sites. Our approach
could be regarded as an informed restricted sampling because
prior information is collected from a rapid assessment that
supposedly reflects underlying spatial differences in diversity.
The information is used to better allocate limited resources to
the resource-intensive census by taking advantage of variable
probability sampling theory. Studies applying sampling with

covariate designs to species diversity assessment are few. Hence,
it is advantageous to explore their potential benefits at the very
least from the perspective of managing resources for biodiversity
assessment.

While it is expected that there would be variations between
sites, the large ranges in the accuracy and consistency between
sites come as a surprise. For example, the consistency of Danum
was about six to eight times lower than that of Pasoh depending
on sampling intensity. A possible explanation could be that sites
such as Danum and Amacayacu consist of a few small pockets
of cells that are exceptionally high or low in species richness
(Fig. S23a, c; Supplementary Materials). When some of these cells
are not selected for census, the final ANN model would not be
able to adequately predict richness in these clusters. In contrast,
Pasoh does not show such localization of very high or very low
richness cells (Fig. S23b). Instead, cell species richness is quite
similar across Pasoh (Fig. S23b). We suspect that the localization
is due to the small cell size (20 × 20 m) used in our study. Under
the well-recognized species–area relationship (Condit et al. 1996),
delineating larger cell size might mitigate this effect because a
larger cell size will have greater number of species per cell, which
in turn reduces heterogeneity in spatial distribution of species
richness. Future study could conduct an in-depth analysis on the
effect of changing cell size and its trade-off. Having comparable
accuracy and consistency between sites will help our proposed
sampling strategy to be generalizable to other forests in the
tropics and subtropics.

Knowledge of plant species is integral to a rapid assessment
because it determines the ability to identify a plant, and in turn,
the amount of information gained. Results suggest that knowl-
edge has minimal effects on the accuracy and consistency in
mapping distribution of species richness. Lam et al. (2018) found
similar results when predicting cell-level species richness with
3P sampling. Moreover, results suggest that knowing at least
half of the species that are abundant is sufficient for a rapid
assessment. This supports engaging local communities with their
knowledge in a rapid assessment. Local knowledge concerns nam-
ing plants by a local community in an area (Khasbagan and Soyolt
2008). There are challenges using local knowledge. Folk names
assigned to plants should ideally be a one-to-one correspondence
to scientific nomenclature, but one-to-multitude or multitude-
to-one correspondence often happens (Khasbagan and Soyolt
2008, Lam and Kleinn 2008). Any conflict in nomenclature should
be resolved prior to a rapid assessment such as with methods
listed in Khasbagan and Soyolt (2008). Notwithstanding this issue,
traditional knowledge has been recognized for its contribution to
sustainable forest management (Parrotta et al. 2016). For example,
Cummings and Read (2016) applied local knowledge of Makushi
and Wapishiana Amerindians to assess impact of land-use change
on tree species in southern Guyana. Hernández-Stefanoni et al.
(2006) found that indigenous Mayan knowledge was comparable
to satellite imaging in assessing plant species composition and
vegetation structures in a Mexican tropical forest. It should be
cautioned that in practical applications, knowledge of species in
a forest is highly dependent on a local community such as their
ties to the surrounding forests. Thus, it is likely that knowledge
level (KN) could well be below 50%. Prior to a rapid assessment,
knowledge of a community could be assessed by an expert and
appropriate training could be provided to build their capacity. A
future simulation study could explore lower KN to reflect prac-
tical applications. Nonetheless, these studies and ours support
creatively exploring ways to integrate local knowledge in forest
management decision-making.
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Rapid assessment effort and type influence the amount of
information gained. It appears that RE, the number of rapidly
assessed individuals, has the strongest effect on the accuracy
and consistency regardless of sampling design and intensity.
This agrees with the general species–individual relationship in
that the number of observed species increases with the number
of sampled individuals (Condit et al. 1996). However, higher
RE increases resources required for a rapid assessment. Thus,
the choice of RE depends on resource constraints and capacity
of local communities. Building capacity of local communities
benefits a rapid assessment. RE could be increased without a
huge increase in required resources because local communities
could identify species faster at a set time or simply by having
more people involved in the activity. This study recommends RE
of 20 individuals regardless of knowledge and RT. This is because
increasing RE from 10 to 20 individuals improves the accuracy
and consistency at a greater rate than increasing RE from 20 to 40
individuals.

Among the RTs, the random walk is the most accurate and con-
sistent when compared to the transect and the nearest-neighbor
approach. Heterogeneity in local environmental (Fayolle et al.
2012) and dispersal limitation (Seidler and Plotkin 2006) could lead
to local aggregation of individuals of a plant species. The three
methods address this spatial autocorrelation differently. With
random selection, RTrw should reduce the chance of selecting
individuals of the same species due to local aggregation, which
in turn should observe a more variety of species. Analogous to
RTrw is the TMS method by Goff et al. (1982). Huebner (2007) found
that TMS was better at detecting invasive plants than systematic
plot and transect. We expect RTtr to produce higher accuracy
and consistency than RTnn because RTnn is more likely to select
individuals of the same species. However, results suggest that RTtr
is comparable to or only slightly better than RTnn. A possible
explanation is the small cell size (20 × 20 m). We speculate that
RTtr would perform better than RTnn if the cell size is larger,
which causes selected individuals to spread over a wider area,
thus capturing a more variety of species. Analogously, Quon et al.
(2020) found that subplots of a cluster plot captured more diverse
plant species when they were spread further apart. This could
be explored in a future study along with the influence of cell
size on the site effect. Nevertheless, RTtr and RTnn are more
field operational than RTrw. Strictly speaking, implementing RTrw
in the field requires a full list of trees in each cell prior to
random selection, which is impractical. Hence, field application
of RTrw would be more haphazard than actual randomness. In
this study, RTrw serves more as the baseline comparison to RTnn
and RTtr. On the other hand, RTnn and RTtr are familiar methods
in sampling tree diversity (Gordon and Newton 2006, Wohlgemuth
et al. 2008). While both are comparable, this study recommends
RTtr because it is easier to select a random starting point and
lay out a transect following a specific azimuth across a row of
cells. However, ground training is still needed to implement RTtr
in the field to reduce haphazardness in selecting plants for rapid
assessment.

This study highlights that constructing a covariate for mapping
distribution of species richness is not trivial. The choice of a
covariate affects the accuracy and consistency of the sampling
with covariate designs. When estimating forest volume, sam-
pling with covariate designs generally produce unbiased esti-
mates (Magnussen 2015) and are more efficient than SRS (Yang
et al. 2019), but Hsu et al. (2021) showed that 3P sampling pro-
duced different levels of precision when using different covariates.
In our study, there is no advantage in using Srapid as the covariate

because sampling with covariate designs with Srapid are either
comparable to or worse than SRS. This contradicts the common
perception that sampling with covariate designs would be effec-
tive if a covariate is highly correlated with the variable of interest.
On the other hand, the covariate Ifreq works as expected.

We speculate this is the issue of regression analysis under
complex survey designs (Lohr 2010; p. 429–444) as an analysis
is sensitive to its predictor space (Draper and Smith 1998; p.
721). Lohr (2010) showed that a sampling design influenced a
predictor space, especially when inclusion probability was differ-
ent between samples or was related to the response variable. As
evident in Fig. 6, the predictor spaces formed by sampling with
covariate designs with Srapid are different to those formed by the
sampling designs with Ifreq. SOL, LIST(Srapid), and LPM(Srapid) tend
to select census cells from Srapid strata with high frequency of
rapid cells similar to the way SRS select census cells (Fig. 6). On
the other hand, LIST(Ifreq) and LPM(Ifreq) tend to select census
cells more evenly distributed across Srapid strata, which is drasti-
cally different from SRS—especially Danum (Fig. 6a, b). Yang et al.
(2019) found similar issues in estimating forest volume by variable
probability sampling with random forest imputation and nonlin-
ear models. They used selection probabilities as weights during
model fitting to reduce bias. Thus, this issue of covariate requires
consideration because there is a growing interest to predict spatial
distribution of primary forest products across a large forest area
with remote sensing (Lisańczuk et al. 2020, D’Amico et al. 2022).
Furthermore, tools have also been developed to use wall-to-wall
airborne laser scanning data to assist allocation of samples such
as sgsR (Goodbody et al. 2023), which could benefit from carefully
designed covariates. Nevertheless, different covariates related to
diversity such as the Shannon diversity index should be tested in
future studies. If one or more covariates could be found to reduce
the strong site effects, that would help in generalizing our study.

Both LPM(Ifreq) and LIST(Ifreq) are viable choices of sampling
designs to map distribution of species richness. We recommend
LPM(Ifreq) for several reasons. For one, sampling intensity is usu-
ally low. Chiarucci et al. (2003) found that many plant diversity
inventories had sampling intensity less than 1%. Sampling inten-
sity of some national forest inventories in Europe could be only
0.2% (Tomppo et al. 2010). Results show that LPM(Ifreq) is as good
as or slightly better than LIST(Ifreq) in terms of accuracy and
consistency when sampling intensity is below 5%. Thus, imple-
menting LPM(Ifreq) benefits forest planning regardless of whether
decision-making is based on accuracy or consistency. LPM also
has the advantage of selecting samples from a multidimensional
sampling frame (Grafström et al. 2012). For example, Pitkänen
et al. (2022) found that LPM increased efficiency up to three
times in selecting sample locations for pre-harvest assessment
when using multiple covariates derived from ground inventory
and various sources of remote sensing. Because species diversity
is a multifaceted concept (Lam and Maguire 2012), it is possible
to consider this when selecting census cells with LPM. However,
LIST is easier to be understood and implemented by practitioners
not trained in sampling theory compared to LPM. If this is of
concern and also if sampling intensity is greater than 10%, we
would recommend LIST(Ifreq).

Increasing the number of individuals for rapid assessment or
sampling intensity will directly increase the cost of our meth-
ods. According to Iles (2003, p. 437), sampling with covariate
designs reward judgment. Better judgment reduces sample size
for detailed measurements, which in turn reduces inventory cost
(Iles 2003). In our context, increase in the experience of local
communities increases speed in the field, reduces identification
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Figure 6. Proportion of rapid cells selected for census at each level of
rapid richness (Srapid) for the five sampling designs: SRS, SOL,
LIST(Srapid), LIST(Ifreq), LPM(Srapid), and LPM(Ifreq). The proportions are
depicted for (a, b) Danum and (c, d) Pasoh at 5% and 20% sampling
intensity. The gray shaded region depicts proportion of all rapid cells
with respect to Srapid in the two sites. The rapid assessment combination
under which census cells are selected is KN100 × RE20 × RTrw.

error, or even improves the ability to identify rare species. This
could lead to increasing RE within the same set of time, which
has the upside of maintaining costs and improving accuracy and
consistency. Hence, there is an incentive to invest in training
and engaging local communities. Census is resource intensive,
which makes deciding a sampling intensity critical. The nonlinear
decreasing trends of accuracy and consistency over sampling
intensity mirror the trends of precision in volume estimates over
sample size from Yang et al. (2019). This implies that approaches
to decide sample size for estimating volume could be considered
for diversity assessment such as sample size determination for-
mulas from Kershaw Jr. et al. (2016) or nonlinear models relating
precision to sample size in Yang et al. (2019). Looking at the
decay rate, our study suggests 5% sampling intensity because the
rate of improvement in accuracy and consistency is the largest
when increasing sampling intensity from 1% to 5%. However, this
suggestion is provisional because a detailed cost-plus-loss anal-
ysis (Lynch 2017, Yang et al. 2017), which examines the trade-off
between cost components, accuracy, and consistency, is needed.
This aspect of biodiversity assessment has not been well studied
and is required if one is to design an efficient multipurpose
inventory system that adequately samples timber products and
species diversity.

A limitation to our approach is spatial coverage. A rapid assess-
ment by local communities is no match for geographical coverage
by remote sensing. It is possible to integrate remote sensing and
our sampling strategy into a hierarchical variable probability sam-
pling design. At the landscape level, wall-to-wall metrics such as
normalized difference vegetation index (Pau et al. 2012), fraction
of photosynthetically active radiation (Coops et al. 2019), or topo-
climatic variables and phenology-related information (Fassnacht
et al. 2016) could be derived from remote sensing. They serve as

the covariates for sampling with covariate designs to select local
sites for rapid assessment and census. The information from the
local sites are then fed back to the remote sensing metrics to
predict spatial distribution of species richness at the landscape
level. The number of required levels depends on geographical
coverage and sources of remote sensing. Nevertheless, covariates
developed at multiple levels are intrinsically linked through the
hierarchical variable probability sampling design.

Conclusion
Decision making in sustainable forestry requires adequate
information and appropriate tools (Baskerville 1986). This study
develops a sampling strategy of assessing spatial distribution
of species richness by integrating rapid assessment by local
communities, sampling with covariate designs, and machine
learning techniques. The aim is to diversify tools to generate
information for sustainable management of plant diversity. Using
knowledge to guide sample selection has been around for decades
(Grosenbaugh 1964) but has seldom been applied. This study has
demonstrated the feasibility of using local knowledge to construct
covariates useful for diversity assessment. It also highlights the
impact of complex survey designs on the choice of covariate
to achieve the desired results. This study uses ANN to build
prediction models for its non-parametric nature and flexibility.
However, parametric models such as the geostatistical methods
of kriging used in Ferrier and Guisan (2006) could be explored in
future study. As forest management objectives are increasingly
complex and multifaceted to meet diverse societal demands, a
forest inventory system needs to be innovative and multipurpose.
It ideally generates information on timber products and forest
ecosystem services on the same level of precision. In conclusion,
our study seeks to empower local communities by finding means
for them to directly engage in a forest management process.
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